Definitions
Series  A series is formed by the sum or addition of the terms in a sequence. For example an arithmetic series is formed by summing the terms in an arithmetic sequence.
Sequence: 
(1)
\begin{equation} 3, 5, 7, 9,... \end{equation}

Series: 
(2)
\begin{equation} 3+5+7+9+... \end{equation}

n^{th} Partial Sum  This is defined as the sum from the 1^{st} term to the n^{th} term in the sequence. For example the 5^{th} partial sum of the series above would be:
(3)Notation for Partial Sums
This comes in two flavors. One that is pretty easy to understand and the most commonly used notation in SL math. The second is more complex, scary and used only occasionally in SL.
First notation: An n^{th} partial can be denoted by $S_n$ where n tells the reader how many terms to sum. For example using the arithmetic series $3+5+7+9+...$ then the 5^{th} partial sum would be:
(4)Its worth noting that the "n^{th} partial sum" generally refers to the actual result of the addition not the statement showing all of the addition.
Second Notation: This notation is often called "summation notation" and includes what term number we start with, what term number we finish with and the details of what we are summing. For example:
This notation allows us to begin summing at any term we would like. The following example starts summing at the 5^{th} term and continues until the 7^{th} term.
The "equation" part of the summation notation works by simple substitution of values for n into the equation, doing the arithmetic results in one of the terms in the series.
Summation of Arithmetic Series
With a bit of cleverness and observation it is possible to create two equations that allow easy calculation for an arithmetic series:
(5)This formula requires you to know the first and last term in the series. A second equation, shown below, allows you to calculate the sum without having to know the final term that you will be summing (clever!). The next equation allows you to calculate the sum if you know the first term and the common difference.
(6)This equation comes from the previous equation when the substitution of $u_n = u_1 + (n1)d$ is made and the algebraic express is simplified.
Examples
Example 1 Find the 12^{th} partial sum for $4.5+6+7.5+...$
Example 2 Find $S_{20}$ for $5+2+ 1 + 4$
Example 3 Find the value of n such that $S_n=205$ for $7+10+13+...$
Summation of Geometric Series
Working out an equation for the summation of a geometric series requires a good deal of cleverness and a healthy dose of what feels like magic.
The end result is the formula:
(14)Where r is the common ratio and $u_1$ is the first term in the series.
Examples
Example 1 Find $S_{20}$ for $\frac{1}{2}+1+2+4+8+...$
Example 2 Find for $18+30+50+...$ find n when $S_n \approx 443,088$
A Few More Definitions
Infinite Series  A series that has a infinite number of terms. I'd give an example but it would take a while to write down…
Divergent Infinite Series A series that when all the infinite number of terms are added the result is positive or negative infinity. If this seems like, "Duh, doesn't that always happen?" take a peek at the next definition.
Convergent Infinite Series  A series that when all the infinite number of terms are added the result is a finite (or noninfinite) number. How's that possible you ask? Try adding up the series below on your calculator.
(19)Add more and more terms in this series and it will "converge" or get closer and closer to 2 but will never get there, because you'd have to literally add an infinite number of terms. Or try:
(20)While it may seem silly and useless to talk about the sum of an infinite number of terms, but there are some "interesting" and useful results.
Infinite Geometric Series
It terms out that (infinite) geometric series will converge if $1< r <1$. Looking back at the equation for the sum of a geometric series:
(21)If $1< r <1$ and n gets bigger and bigger then $r^n$ will get closer and closer to zero. So "when n gets to infinity" (it can't but its easier to say this way) then $r^{\infty} = 0$ leave us with the equation:
(22)Nice. And. Simple.
Example
Example 1 Find the value of the infinite sum of $1+\frac{2}{3} +\frac{4}{9}+...$
In point (18) above, the value 1.4 is not correct. 5/3 = 1.6666~1.7
So, 1.7 should be used in place of 1.4
If 1.4 is used, the answer would be 27 (approx) and not 19 as stated above
Awesome thank you. Its fixed.
Hank,
Very sweet set of notes you are building up here and at your website changeinenergy. Thank you for sharing.
Thanks. I do my best and sometimes that works out to be not too bad. Always looking for folks to add to the site…
very educative and informative
Best page ever, you really saved my life and my ib math califications. Thank you!
Thanks m80, you saved me for paper 2.
Only thing I can recommend you change/input is to show the process of using the "exponents and logarithms" equation when finding the nth term in a finite geometric sequence. Wolfram was a little difficult to comprehend for that exact example.
Great page it would be a great advantage if you published the notes on pdf to study, thanks
I've had a few requests for that… Sorry just don't have the time. However!
There is a print option at the bottom of the page. You may be able to print to a pdf.
could you please make an easier version of how to calculate sums in arithmetic as well as geometric progressions that consist of simple interest and compound interest questions? It would be really helpful! Btw this page is a life saver ..thanks!! ps: look forward to my request i need it ASAP. :)
Post preview:
Close preview